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The field theoretic renormalization group and operator-product expansion are applied to the model of a
passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is
governed by the Navier-Stokes equation, subject to an external random stirring force with the correlation
function proportional todst− t8dk4−d−2«. It is shown that the scalar field is intermittent already for small«, its
structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically
calculated as series in«. The practical calculation is accomplished to order«2 (two-loop approximation),
including anisotropic sectors. As for the well-known Kraichnan rapid-change model, the anomalous scaling
results from the existence in the model of composite fields(operators) with negative scaling dimensions,
identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears
similar for the Gaussian model with zero correlation time and the non-Gaussian model with finite correlation
time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the
model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these
results for real passive advection and comparison with the Gaussian models and experiments are briefly
discussed.
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I. INTRODUCTION

In recent years, considerable progress has been achieved
in the understanding of intermittency and anomalous scaling
of fluid turbulence. Both natural and numerical experiments
suggest that the deviation from the classical Kolmogorov
theory [1–3] is even more strongly pronounced for a pas-
sively advected scalar fieldusxd;ust ,xd (temperature, en-
tropy, density of an impurity, etc.) than for the velocity field
itself; see, e.g., Refs.[3–6] and literature cited therein. At the
same time, the problem of passive advection appears more
easily tractable theoretically: even simplified models describ-
ing the advection by a “synthetic” velocity fieldvsxd
;hvisxdj with a given Gaussian statistics reproduce many of
the anomalous features of genuine turbulent heat or mass
transport observed in experiments. Therefore, the problem of
passive scalar advection, being of practical importance in
itself, may also be viewed as a starting point in studying
intermittency and anomalous scaling in the turbulence on the
whole.

The issue of interest is, in particular, the behavior of the
equal-time structure functions of the scalar field

Snsrd = kfust,xd − ust,x8dgnl, r = x − x8, r = ur u.
s1.1d

The concept of anomalous scaling implies a power-law be-
havior of the functions(1.1) in the inertial-convective range
of scales,Sn~ rzn, with a nonlinear dependence of the expo-
nentszn on n; see, e.g., Refs.[1–6].

The crucial breakthrough in theoretical research is related
to a simple model of a passive scalar quantity advected by a
random Gaussian field, white in time and self-similar in
space, known as the Kraichnan rapid-change model[7].

There, for the first time the existence of anomalous scaling
was established on the basis of a microscopic model[8] and
the corresponding anomalous exponents were calculated
within controlled approximations[9–12] and a systematic
perturbation expansion in a formal small parameter[13]. De-
tailed review of the recent theoretical research on the passive
scalar problem and the bibliography can be found in Ref.
[14].

In the “zero-mode approach,” developed in[9–12] (see
also[14]), nontrivial anomalous exponents are related to the
zero modes(unforced solutions) of the closed exact differen-
tial equations satisfied by the equal-time correlation func-
tions. From the field theoretic viewpoint, this is a realization
of the well-known idea of self-consistent(bootstrap) equa-
tions, which involve skeleton diagrams with dressed lines
and dropped bare terms. Owing to very special features of
the rapid-change models(linearity in the passive field and
time decorrelation of the advecting field) such equations are
exactly given by one-loop approximations, and the resulting
equations in the coordinate space are differential(and not
integral or integro-differential as in the case of a general field
theory). In this sense, the model is “exactly solvable.” Fur-
thermore, in contrast to the case of nonzero correlation time,
closed equations are obtained for the equal-time correlations,
which are Galilean invariant and, therefore, not affected by
the so-called “sweeping effects” that would obscure the rel-
evant physical interactions.

The second systematic analytical approach to the rapid-
change model, proposed in papers[13], is based on the field
theoretic renormalization group(RG) and operator product
expansion(OPE). There, anomalous scaling emerges as a
consequence of the existence in the model of composite
fields with negative scaling dimensions(“dangerous compos-
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ite operators”), identified with the anomalous exponents.
This allows one to give alternative derivation of the anoma-
lous scaling, to construct a systematic perturbation expansion
for the anomalous exponents, analogous to the famous« ex-
pansion in the RG theory of critical behavior(see the mono-
graphs[15,16] and references therein), and to calculate the
exponents to the second[13,17] and third[18,19] orders.

The two approaches complement each other well: the
zero-mode technique allows for exact(nonperturbative) so-
lutions for the anomalous exponents related to second-order
correlation functions[10,20,21] (they are nontrivial for pas-
sive vector fields or anisotropic sectors for scalar fields),
while the RG approach form the basis for systematic pertur-
bative calculations of the higher-order anomalous exponents.
For anisotropic velocity ensembles or/and passively advected
vector fields, as well as for passive advection of extended
objects(polymers or membranes), where the calculations be-
come rather involved, all the existing results for higher-order
correlation functions were derived only by means of the RG
approach and only to the leading order in« [22–25].

From a more physical point of view, zero modes can be
interpreted as statistical conservation laws in the dynamics of
particle clusters[26]. The concept of statistical conservation
laws appears rather general, being also confirmed by numeri-
cal simulations of Refs.[27,28], where the passive advection
in the two-dimensional Navier-Stokes(NS) velocity field
[27] and a shell model of a passive scalar[28] were studied.
This observation is rather intriguing because in those models
no closed equations for equal-time quantities can be derived
due to the fact that the advecting velocity has a finite corre-
lation time (for a passive field advected by a velocity with
given statistics, closed equations can be derived only for
different-time correlation functions, and they involve infinite
diagrammatic series).

One may thus conclude that breaking the artificial as-
sumptions of the time decorrelation and Gaussianity of the
velocity field is the crucial point.

In addition to the calculational efficiency, an important
advantage of the RG approach is its relative universality: it is
not bound to the aforementioned “solvability” of the rapid-
change model and can also be applied to the case of finite
correlation time or non-Gaussian advecting field. In Refs.
[29,30] (see also[31] for the case of compressible flow and
[32] for a passive vector field) the RG and OPE were applied
to the problem of a passive scalar advected by a Gaussian
self-similar velocity with finite(and not small) correlation
time. The energy spectrum of the velocity in the inertial
range has the formEskd~k1−2«, while the correlation time at
the momentumk scales astskd~k−2+h. It was shown that,
depending on the values of the exponents« andh, the model
reveals various types of inertial-range scaling regimes with
nontrivial anomalous exponents, which were explicitly de-
rived to the first[29,31] and second[30] orders of the double
expansion in« and h. The most interesting case ish=«,
when the exponents can be nonuniversal through the depen-
dence on the ratio of the velocity correlation time and the
turnover time of the passive scalar.

Earlier, a similar model was proposed and studied in de-
tail (using numerical simulations, in two dimensions) in [33].
Various aspects of the transport and dispersion of particles in

random Gaussian self-similar velocity fields with finite cor-
relation time were also studied in Refs.[34–41].

As was pointed out in Ref.[33], the Gaussian model with
finite correlation time suffers from the lack of Galilean in-
variance and therefore misrepresents the self-advection of
turbulent eddies. It is well known that the different-time cor-
relations of the Eulerian velocity field are not self-similar, as
a result of these “sweeping effects,” and depend substantially
on the integral scale. It would be much more appropriate to
impose the scaling relations forEskd andtskd in the Lagrang-
ian frame, but this is embarrassing due to the daunting task
of relating Eulerian and Lagrangian statistics for a flow with
a finite correlation time.1 In the RG and OPE formalism, the
sweeping by the large-scale eddies is related to the contribu-
tions of the composite operators built solely of the velocity
field vsxd and its temporal derivatives, as discussed in detail
in Refs. [16,43–46] for the case of the stochastic NS equa-
tion. In the Gaussian model those operators become danger-
ous (that is, their scaling dimensions become negative) for
«ù1/2, which gives rise to strong infrared divergences in
the correlation functions[29]. This means that the sweeping
effects, negligible for small«’s, become important for«
ù1/2. In a Galilean-invariant model, such operators give no
contribution to the quantities like(1.1), as explained in
[43–46] for the NS case. In the Gaussian case, these ir di-
vergences persist in the structure functions, which provides
not only an upper bound for the reliability of the«-h expan-
sion, but also a natural bound for the validity of the Gaussian
model itself(which excludes, in particular, the most realistic
Kolmogorov value«=4/3 and itsvicinity). These conclu-
sions agree with the nonperturbative analysis of Ref.[41],
where the value of«=1/2 was reported as the threshold
between two qualitatively different regimes for a Lagrangian
particle advected by a Gaussian velocity ensemble. The same
threshold value of«=1/2 wasobtained earlier in Refs.[37]
for a two-dimensional strongly anisotropic model.

In this paper, we shall study the case of a passive scalar
field, advected by a non-Gaussian velocity field governed by
the stochastic NS equation. To be precise, the advection-
diffusion equation for the scalar field has the form

¹tu = k0]
2u + f, ¹t ; ]t + svi]id, s1.2d

where]t;] /]t , ]i ;] /]xi , ¹t is the Lagrangian derivative,
k0 is the thermal conductivity or molecular diffusivity,]2 is
the Laplace operator, andf ; fsxd is an artificial Gaussian
random noise with zero mean and correlation function

kfsxdfsx8dl = dst − t8dCsr d, r = x − x8. s1.3d

The detailed form of the functionC is unessential; it is only
important thatC decreases rapidly forr @L, whereL is some
integral scale. The noise maintains the steady state of the
system and, ifC depends on the vectorr and not only on its

1In this connection, it should be noted that, due to the time de-
correlation, in the rapid-change model there is no problem in relat-
ing Eulerian and Lagrangian statistics of the velocity field: they are
identical. This allows one to perform very accurate numerical simu-
lations in the Lagrangian frame; see Refs.[42].
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modulusr = ur u, is a source of large-scale anisotropy. With no
loss of generality it can be assumed that the functionC is
dimensionless. The absence of the time correlation in(1.3) is
also unessential; in a more realistic formulation, the noise
can be replaced by an imposed constant gradient of the scalar
field; see Refs.[11,12,29,31,33].

The transverse(divergence-free, due to the incompress-
ibility condition ]ivi =0) velocity field satisfies the NS equa-
tion with a random driving force

¹tvi = n0]
2vi − ]iP + f i , s1.4d

whereP and f i are the pressure and the transverse random
force per unit mass(all these quantities depend onx). We
assume forf a Gaussian distribution with zero mean and
correlation function

kf isxdf jsx8dl =
dst − t8d
s2pdd E

kùm

dk Pijskddfskdexpfik · sx − x8dg,

s1.5d

wherePijskd=di j −kikj /k
2 is the transverse projector,dfskd is

some function ofk;uk u and model parameters, andd is the
dimension of thex space. The momentumm=1/,, the recip-
rocal of another integral scale,, provides ir regularization.
Its precise form is unessential; the sharp cutoff is the most
convenient choice from purely calculational reasons. For
definiteness, in what follows it is always assumed thatL
@,, that is, the largest scale in the problem is the integral
scale related to the scalar noise; it will be set to infinity
whenever possible.

The standard RG formalism is applicable to the problem
(1.4) and(1.5) if the correlation function of the random force
is chosen in the power form

dfskd = D0k
4−d−2«, s1.6d

whereD0.0 is the positive amplitude factor and the expo-
nent 0,«ø2 plays a role analogous to that played by 4−d
in the RG theory of critical behavior[15,16]. The form(1.6)
is widely used in the RG theory of turbulence since the pio-
neering work[47–50]. The most realistic value of the expo-
nent is«=2: with an appropriate choice of the amplitude, the
function (1.6) for «→2 turns to a delta function,dfskd
~dskd, which corresponds to the injection of energy to the
system owing to interaction with the largest turbulent eddies;
for a more detailed discussion see Refs.[16,44–46].

The results of the RG analysis of the model(1.4)–(1.6)
are reliable and internally consistent for small«, while the
possibility of their extrapolation to the real value«=2 and
thus their relevance for real fluid turbulence is far from ob-
vious; see, e.g., Ref.[46] for a recent discussion. We shall
not discuss this important problem in detail and restrict our-
selves to a few remarks which will be relevant in what fol-
lows.

The time decorrelation of the random force guarantees
that the full stochastic problem(1.2)–(1.5) is Galilean invari-
ant for all values of the model parameters, includingD0 and
«. As a consequence, the ordinary perturbation theory for the
model[that is, the expansion in the nonlinearities, or, equiva-
lently, in D0 from Eq.(1.6)] is manifestly Galilean covariant:

all the exact relations between the correlation functions im-
posed by the Galilean symmetry(Ward identities) are satis-
fied order by order. The renormalization procedure does not
violate the Galilean symmetry, so that the improved pertur-
bation expansion, obtained with the aid of RG and OPE,
remains covariant. This means, in particular, that the Gal-
ilean invariant quantities, for example, the equal-time struc-
ture functions(1.1), are not affected by the sweeping(here,
the latter becomes important for«ù3/2 [43]). More for-
mally, the contributions of the “dangerous” operators built of
the velocity field and its temporal derivatives do not appear
in the OPE for invariant correlation functions; see Refs.
[16,43–46] for detailed discussion.

This means that the scaling relations, obtained for Gal-
ilean invariant quantities for small«, in model (1.2)–(1.6)
can be extrapolated beyond the threshold«=3/2 despite the
fact that the sweeping becomes important there. More physi-
cally, this means that, in contrast to the Gaussian model, the
relative motion of the fluid or impurity particles in the
inertial-convective range of scales is not affected by overall
sweeping by the large-scale eddies. Indeed, the most recent
numerical simulations of the model(1.4)–(1.6) have shown
that the scaling relations, obtained by the RG analysis for the
structure functions, remain valid for« as high as«=7/4 [51]
(see also an earlier work[52]).

For small«, critical dimensions of all composite operators
in the model(1.4)–(1.6) are positive. As a result, the scaling
behavior of the velocity correlation functions is not anoma-
lous, in the sense that they have a finite limit for,=1/m
→`, and the corresponding scaling exponents are multiples
of a single quantity(critical dimension of the velocity field).

However, the same numerical simulations[51,52] suggest
that, as« increases, the behavior of the model(1.4)–(1.6)
undergoes a qualitative changeover and the scaling becomes
anomalous, in the sense that the exponents of the structure
functions become different from the results of naive extrapo-
lation of the small-« prediction and, probably, become inde-
pendent of«. We shall return to this important issue in the
Conclusion, and in the bulk of the paper we shall concentrate
on the behavior of the passive scalar field in the model
(1.2)–(1.6), which appears highly nontrivial.

We will show that, already for infinitesimal values of«,
when the velocity statistics is not yet intermittent, the scalar
field, advected by such a velocity ensemble, displays anoma-
lous scaling behavior. The corresponding anomalous expo-
nents can be calculated within a systematic perturbation ex-
pansion, as a series in«.

The plan of the paper is the following.
A detailed description of the model has already been

given above. In Sec. II we give the field theoretic formula-
tion of the original stochastic problem and present the corre-
sponding diagrammatic technique. In Sec. III we analyze uv
divergences in the model, establish its multiplicative renor-
malizability, and derive the corresponding RG equations. In
Sec. IV we show that the RG equations of our model have
the only ir attractive fixed point in the physical range of
parameters; its coordinates are calculated to the second order
of the « expansion. The existence of such a fixed point
means that the correlation functions of our model in the ir
ranges1/r ,k,m!Ld exhibit scaling behavior with certain
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critical dimensionsDF of all the fields and parametersF.
This determines the dependence of the correlation functions
on the argumentLr (but not yet onmr). In general, the
dimensions are calculated as series in«, but for some basic
quantities(velocity and scalar fields, their powers, and fre-
quency) they are found exactly.

The key role in the following is played by the composite
operators built of the gradients of the scalar field. They are
introduced in Sec. V, and the corresponding dimensionsDF
are given to the first order in« (one-loop approximation). In
Sec. VI we introduce the operator-product expansion and
demonstrate its relevance to the issue of inertial-range
anomalous scaling. We show that the critical dimensions of
aforementioned composite operators can be identified with
the anomalous exponents, which describe the dependence of
the correlation functions on the argumentmr. The scalar op-
erators are “dangerous”sDF,0d, which implies anomalous
scaling (singular dependence onmr and divergence formr
→0). The anomalous exponents of anisotropic contributions
are determined by the critical dimensions of tensor compos-
ite fields and thus they also exhibit nontrivial scaling behav-
ior.

The largest Sec. VII is devoted to the calculation of the
anomalous exponents(critical dimensions of the composite
operators built of the gradients of the scalar field) to the
order «2 (two-loop approximation). The results look rather
cumbersome and are presented in a separate section, Sec.
VIII. A discussion of the results, their relevance for real pas-
sive advection, and comparison with the Gaussian models
and experiments are given in Sec. IX.

II. FIELD THEORETIC FORMULATION

The field theoretic formulation and renormalization of the
problem(1.2)–(1.6) is discussed in detail in Refs.[16,44,45];
below we confine ourselves to only the necessary informa-
tion.

According to the general theorem[53], the stochastic
problem(1.2)–(1.6) is equivalent to the field theoretic model
of the doubled set of fieldsF;hv8 ,v ,u8 ,uj with action
functional

SsFd = Svsv8,vd + u8Duu8/2 + u8f− ¹t + k0]
2gu, s2.1d

where

Svsv8,vd = v8Dvv8/2 + v8f− ¹t + n0]
2gv s2.2d

is the action functional for the stochastic problem
(1.4)–(1.6), Du andDv are the correlation functions(1.3) and
(1.5) of the random forcesf and f i, respectively, and all the
required integrations overx=ht ,xj and summations over the
vector indices are understood, for example,

v8sv ] dv ;E dtE dx vi8sv j] jdvi8.

The auxiliary vector field is also transverse,]ivi8=0, which
allows us to omit the pressure term on the right-hand side of
Eq. (2.2), as becomes evident after the integration by parts:

E dtE dx vi8]iP = −E dtE dx Ps]ivi8d = 0.

Of course, this does not mean that the pressure contribution
can simply be neglected: the fieldv8 acts as the transverse
projector and selects the transverse part of the expressions to
which it is contracted in Eq.(2.2).

The formulation(2.1) and (2.2) means that statistical av-
erages of random quantities in the original stochastic prob-
lem can be represented as functional averages with the
weight expSsFd, and the generating functionals of total
fGsAdg and connectedfWsAdg correlation functions of the
problem are represented by the functional integral

GsAd = expWsAd =E DF expfSsFd + AFg s2.3d

with arbitrary sourcesA;hAv8 ,Av ,Au8 ,Auj in the linear form
AF;oFedx AFsxdFsxd.

The model(2.2) corresponds to a standard Feynman dia-
grammatic technique; the bare propagators(lines in the dia-
grams) in the frequency-momentumsv-kd representation
have the forms

kviv j8l0 = kvi8v jl0
* = s− iv + n0k

2d−1Pijskd,

kviv jl0 = sv2 + n0
2k4d−1dfskdPijskd, kvi8v j8l0 = 0 s2.4d

with dfskd from Eq. (1.6). The interaction in(2.2) corre-
sponds to the triple vertex −v8sv] dv=vi8Vijsv jvs/2 with ver-
tex factor

Vijs = iskjdis + ksdi jd, s2.5d

wherek is the momentum argument of the fieldv8. The full
problem(2.1) involves additional propagators

kuu8l0 = s− iv + k0k
2d−1, kuul0 = Cskdsv2 + k0

2k4d−1,

ku8u8l0 = 0, s2.6d

where Cskd is the Fourier transform of the functionCsr d
from Eq. (1.3); the additional vertex factor inu8sv] du
=u8Viviu has the form

Vi = iki , s2.7d

wherek is the momentum of the fieldu8.

III. RENORMALIZATION AND RG EQUATIONS

The analysis of uv divergences is based on the analysis of
canonical dimensions. In contrast to static models, dynamical
models of the type(2.1) and (2.2) have two scales, i.e., the
canonical dimension of some quantityF (a field or a param-
eter in the action functional) is described by two numbers,
the momentum dimensiondF

k and the frequency dimension

dF
v. They are determined so thatfFg,fLg−dF

k
fTg−dF

v
, whereL

is the length scale andT is the time scale. The dimensions
are found from the obvious normalization conditionsdk

k=
−dx

k
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=1, dk
v=dx

v=0, dv
k =dt

k=0, dv
v=−dt

v=1, and from the re-
quirement that each term of the action functional be dimen-
sionless(with respect to the momentum and frequency di-
mensions separately). Then, based ondF

k and dF
v, one can

introduce the total canonical dimensiondF=dF
k +2dF

v (in the
free theory,]t~]2), which plays in the theory of renormal-
ization of dynamical models the same role as the conven-
tional (momentum) dimension does in static problems.

The canonical dimensions for the problem(2.1) and(2.2)
are summarized in Table I, where we introduced the new
parameters(“coupling constants” or “charges”)

g0 ; D0/n0
3, u0 ; k0/n0 s3.1d

instead ofD0 andk0 and included the dimensions of renor-
malized parameters, which will appear later on. The dimen-
sionless ratiou0 has the meaning of the reciprocal of the
Prandtl number. From Table I it follows that the model(2.1)
and (2.2) is logarithmic(the coupling constantg0 is dimen-
sionless) at «=0, and the uv divergences have the form of the
poles in« in the correlation functions of the fieldsF.

The total canonical dimension of an arbitrary
1-irreducible correlation functionG=kF¯Fl1-ir is given by
the relation dG=dG

k +2dG
v=sd+2d−oFNFdF, where NF

=hNv8 ,Nv ,Nu8 ,Nuj are the numbers of corresponding fields
entering into the functionG, and the summation over all
types of the fields is implied. The total dimensiondG plays
the role of the formal index of the uv divergence: superficial
uv divergences, whose removal requires counterterms, can
be present only in those functionsG for which dG is a non-
negative integer. Analysis of the divergences in our model
should be augmented by the following considerations.

(i) For any model with the Martin-Siggia-Rose-type ac-
tion, that is, the action of the form(2.1) and (2.2), all the
1-irreducible functions withNv8=Nu8=0 contain closed cir-
cuits of retarded propagators and vanish.

(ii ) If for some reason a number of external momenta
occurs as an overall factor in all the diagrams of a given
Green function, the real index of divergencedG8 is smaller
thandG by the corresponding number of unities. The corre-
lation function requires counterterms only ifdG8 is a non-
negative integer. In our model, the derivative] at the vertices
v8sv] dv andu8sv] du can be moved onto the fieldsv8 andu8
using the integration by parts, by virtue of the transversality
of the field v. This decreases the real index of divergence:
dG8 =dG−Nv8−Nu8−Nu, and the fieldsv8 , u8, andu enter the
counterterms only in the form of the derivatives,]v8 and so
on.

(iii ) From the explicit form of the vertex and bare propa-
gators it follows thatNu8−Nu=2N0 for any 1-irreducible
function, whereN0ù0 is the total number of bare propaga-

tors kuul0 entering into the function(obviously, no function
with N0,0 can be constructed). Therefore, the difference
Nu8−Nu is an even non-negative integer for any nonvanish-
ing function. This is a consequence of the linearity of the
original stochastic equation(1.2) in the fieldu.

(iv) Galilean symmetry of our problem requires that the
counterterms to the action be invariant. In particular, the mo-
nomialsv8]tv , v8sv] dv , u8]tu, andu8sv] du can appear only
in the form of covariant derivativesv8¹tv andu8¹tu.

From Table I we finddG=sd+2d−sd−1dNv8−Nv+Nu−sd
+1dNu8 and dG8 =sd+2d−dNv8−Nv−sd+2dNu8. Bearing in
mind thatNu8ùNu we find that superficial divergences can
only be present in the 1-irreducible functionskv8vl1-ir and
ku8ul1-ir, and the corresponding counterterms reduce to the
forms v8]2v and u8]2u. The monomialsv8]tv and u8]tu do
not contain spatial derivatives and therefore they are ruled
out by the property(ii ). Then the property(iv) excludes the
monomialsv8sv] dv and u8sv] du (allowed by dimensional
considerations).

In the special cased=2 a new uv divergence appears in
the 1-irreducible functionkv8v8l1-ir. This case requires spe-
cial attention(see Refs.[54]) and from now on we always
assumed.2. Then the inclusion of the counterterms is re-
produced by the multiplicative renormalization of the action
functional (2.1) and (2.2) with only two independent renor-
malization constantsZ1,2:

SRsFd = SvRsv8,vd + u8Duu8/2 + u8f− ¹t + unZ2]
2gu

s3.2d

and

SvRsv8,vd = v8Dvv8/2 + v8f− ¹t + nZ1]
2gv. s3.3d

In the one-loop approximation the renormalization con-
stants have the forms

Z1 = 1 −
gS̄dsd − 1d
8sd + 2d«

+ Osg2d, Z2 = 1 −
gS̄dsd − 1d

4dusu + 1d«
+ Osg2d,

s3.4d

whereS̄d=Sd/ s2pdd andSd=2pd/2/Gsd/2d is the surface area
of the unit sphere ind-dimensional space. Here and below,
we use the minimal subtraction(MS) scheme, in which all
renormalization constants have the forms “1+only poles in
«.” Since the velocity field is not affected by the fieldsu and
u8, the constantZ1 is independent ofu; the one-loop expres-
sion (3.4) was presented in[50] and the two-loop calculation
was performed much later in Refs.[46,55]. The constantZ2
is determined by the 1-irreducible functionku8ul1-ir, which
does not involve the correlation function(1.3); see item(iii )

TABLE I. Canonical dimensions of the fields and parameters in the model(2.1) and (2.2).

F v8 v u8 u n , n0 m, m , 1 /L g0 g, u0, u

dF
k d+1 −1 d 0 −2 1 2« 0

dF
v −1 1 1/2 −1/2 1 0 0 0

dF d−1 1 d+1 −1 0 1 2« 0
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above. Therefore,Z2 in our model coincides exactly with the
corresponding renormalization constant for the case of a pas-
sive scalar without the random noise, derived in the one-loop
approximation in Ref.[56] (see also Refs.[57]).2

The renormalization(3.2) and(3.3) can be reproduced by
the following multiplicative renormalization of the param-
etersg0, u0, andn0:

g0 = gm2«Zg, n0 = nZn, u0 = uZu, Zn = Z1,

Zu = Z2Z1
−1, Zg = Z1

−3. s3.5d

Hereg, u, andn (without a subscript) are the renormalized
analogs of the corresponding bare parameters(with the sub-
script 0) and m is the reference mass(additional arbitrary
parameter of the renormalized theory). The last relation in
(3.5) is the consequence of the absence of renormalization of
the term withDv in (2.2). The amplitudeD0 in the term with
Dv should be expressed in renormalized parameters using the
relationsD0=g0n0

3=gm2«n3. No renormalization of the fields
F and “masses”m=1/, , 1 /L is needed.

Let Wse0d be some correlation function in the original
model (2.1) and WRse,md its analog in the renormalized
theory with action(3.2). Heree0 is the complete set of bare
parameters, ande is the set of their renormalized counter-
parts. The relationSsF ,e0d=SRsF ,e,md for the action func-
tionals yieldsWse0d=WRse,md for any correlation function
of the fieldsF; the only difference is in the choice of vari-
ables and in the form of perturbation theory(in g instead of

g0). We useD̃m to denote the differential operationm]m for
fixed e0 and operate on both sides of this equation with it.
This gives the basic RG equation

DRGWRse,md = 0, DRG; Dm + bg]g + bu]u − gnDn.

s3.6d

HereDRG is the operationD̃m expressed in the renormalized
variables,Dx;x]x for any variablex, and the RG functions
(the b functions and the anomalous dimensionsg) are de-
fined as

gF ; D̃m ln ZF for all F, s3.7d

bg ; D̃mg = gf− 2« + 3gng, bu ; D̃mu = − ugu, s3.8d

where the relations(3.5) have been used.

IV. FIXED POINT, INFRARED SCALING, AND CRITICAL
DIMENSIONS

It is well known that possible scaling regimes of a renor-
malizable model are associated with the ir stable fixed points
of the corresponding RG equations. In our model, the coor-
dinatesg* , u* of the fixed points are found from the equa-
tions

bgsg*d = busg* , u*d = 0 s4.1d

with theb functions from Eq.(3.8), while the type of a point
is determined by the 232 matrix consisting of the elements
V=h]gbg, ]ubg,]gbu, ]ubuj calculated at the pointg* ,u* .
For ir stable fixed points the matrixV is positive, i.e., the
real parts of all its eigenvalues are positive. In our model
]ubg vanishes identically, and the eigenvalues of the matrix
V are simply given by its diagonal elements.

The analysis of the explicit one-loop expressions shows
that, for«.0, the RG equations for our model possesses the
only IR attractive fixed point in the physical range of param-
eters(g* ,u* must be positive). The coordinates are calculated
as series in«,

g* = g*
s1d« + g*

s2d«2 + Os«3d, u* = u*
s0d + u*

s1d« + Os«2d,

s4.2d

with the one-loop approximation

g*
s1dS̄d =

8sd + 2d
3sd − 1d

, u*
s0d =

1

2
sÎ1 + 8sd + 2d/d − 1d s4.3d

[with S̄d from Eq. (3.4)] for arbitrary d.2. The two-loop
result forg* was presented in[46,55]: g*

s2d<−1.01g*
s1d for d

=3. We have also calculated the two-loop correction for
u* :u*

s1d<−0.035u*
s0d for d=3. We shall not expound on the

derivation of this result because, as we shall see below, the
two-loop corrections to the coordinatesg* ,u* are not needed
for the two-loop calculation of the anomalous exponents.

Existence of the ir stable fixed point implies that the cor-
relation functions of our model in the ir range exhibit scaling
behavior with definite critical dimensionsDF of all the fields
and parametersF. Let F be some multiplicatively renormal-
ized quantity(a field, parameter, or composite operator), that
is, F=ZFFR with a certain renormalization constantZF. Then
its critical dimension is given by the expression(see, e.g.,
[16,44,45])

DfFg ; DF = dF
k + DvdF

v + gF
* , Dv = 2 −gn

* , s4.4d

where dF
k and dF

v are the corresponding canonical dimen-
sions, gF

* is the value of the anomalous dimensiongFsgd
;D̃mln ZF at the fixed point in question, andDv is the criti-
cal dimension of frequency. Owing to the exact relation be-
tweengn andbg in Eq. (3.8), its value at the critical point is
found exactly:Dv=2−2« /3 (without corrections of order«2

and higher). As a consequence, the critical dimensions of
some basis parameters, fields, and composite operators are
also found exactly:

Dfvng = nDv = ns1 − 2«/3d, Dfung = nDu = ns− 1 +«/3d,

Dfv8g = d − Dv, Dfu8g = d − Du, Dm = 1. s4.5d

To avoid possible misunderstanding, it should be noted that
simple linear relations for the dimensions of composite fields
vn and un follow from the fact that these operators are not
renormalizedsZF=1d. For the powers of the velocity, this is a
consequence of the Galilean symmetry(see[43–45]), while
for un it will be discussed below.

2In the books[16,45], there is a misprint in the expression forZ2

on pages 709 and 115, respectively. It is also interesting to note that
the one-loop expression for this constant coincides with its analog
for a passive magnetic field(“kinetic regime”) derived in Refs.[58].
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Let Gsrd=kF1sxdF2sx8dl be, for definiteness, some equal-
time two-point quantity, for example, the pair correlation
function of the primary fieldsF or some multiplicatively
renormalizable composite operators. The existence of a non-
trivial ir stable fixed point implies that in the ir asymptotic
region Lr @1 and any fixedmr the functionGsrd takes on
the form

Gsrd . n0
dG

v

LdGsLrd−DGjsmrd. s4.6d

Here the uv momentum scaleL is defined by the relations
g0=D0/n0

3=L2«, and j is a certain scaling function whose
explicit form is not determined by the RG equation itself.
The canonical dimensionsdG

v , dG and the critical dimension
DG of the functionGsrd are equal to the sums of the corre-
sponding dimensions of the quantitiesF1,2.

V. RENORMALIZATION OF RELEVANT COMPOSITE
OPERATORS

In the following, an important role will be played by the
composite operators built of the fieldusxd and its spatial
derivatives.

We recall that the term “local composite operator” refers
to any monomial or polynomial built of the fieldsF and their
derivatives at a single spacetime pointx=ht ,xj, for example,
un or u8sv] du.

Coincidence of the field arguments in correlation func-
tions containing an operatorF gives rise to additional uv
divergences, removed by a special renormalization proce-
dure. Owing to the renormalization, the critical dimension
DF associated with a certain operatorF is not in general
equal to the simple sum of critical dimensions of the fields
and derivatives entering intoF. As a rule, composite opera-
tors “mix” in renormalization, that is, an uv finite renormal-
ized operator is a linear combination of unrenormalized op-
erators, and vice versa.

In general, counterterms to a given operatorF are deter-
mined by all possible 1-irreducible Green functions with one
operator F and arbitrary number of primary fields,G
=kFsxdFsx1d¯Fsx2dl1-ir. The total canonical dimension
(formal index of divergence) for such quantities is given by

dG = dF − o
F

NFdF, s5.1d

with the summation over all types of fields entering into the
function and the canonical dimensions from Table I. For su-
perficially divergent diagrams,dG is a non-negative integer.

Consider the simplest operators of the formunsxd with the
canonical dimensiondF=−n, entering into the structure func-
tions (1.1). From Table I and Eq.(5.1) we obtaindG=−n
+Nu−sd−1dNv8−Nv−sd+1dNu8, and from the analysis of the
diagrams it follows that the total number of the fieldsu en-
tering into the functionG can never exceed the number of the
fieldsu in the operatorun itself: Nuøn (a consequence of the
linearity of the original stochastic equations inu). Therefore,
the divergence can only exist in the functions withNv=Nv8
=Nu8=0, and arbitrary value ofn=Nu, for which the formal
index vanishes,dG=0. However, at least one ofNu external

“tails” of the field u is attached to a vertexu8sv] du (it is
impossible to construct nontrivial, superficially divergent
diagram of the desired type with all the external tails at-
tached to the vertexF), at least one derivative] appears as
an extra factor in the diagram, and, consequently, the real
index of divergence is necessarily negative.

This means that the operatoru n requires no counterterms
at all, that is, it is in fact uv finite:un=Zfu ngR with Z=1. It
then follows that the critical dimension ofu nsxd is simply
given by the expression(4.4) with no correction fromgF

* and
therefore reduces to the sum of the critical dimensions of the
factors: Dfu ng=nDu=ns−1+« /3d, as already stated in Eq.
(4.5).

Now let us turn to the scalar operators

Fn = s]iu]iudn s5.2d

with dF=0, dF
v=−n. As we shall see below, it is their critical

dimensions that determine the anomalous exponents for the
structure functions(1.1) and other quantities. In this case,
from Table I and Eq.(5.1) we find dG=Nu−Nv−sd−1dNv8
−sd+1dNu8, with the necessary conditionNuø2n following
from the structure of the diagrams. It is also obvious from
the analysis of the diagrams that the counterterms to these
operators can involve the fieldsu ,u8 only in the form of
derivatives]u ,]u8, so that the real index of divergencedG8
has the formdG8 =dG−Nu−Nu8−Nv8=−Nv−sd+2dNu8−dNv8.
It then follows that superficial divergences exist only in the
correlation functions withNv=Nv8=Nu8=0 and anyNuø2n,
and the corresponding operator counterterms are reduced to
the formFk with køn. Therefore, the operatorsFn can mix
only with each other in renormalization, the corresponding
infinite renormalization matrixZF=hZnkj is in fact triangular,
Znk=0 for k.n, and the critical dimensions associated with
the operatorsFn are determined by the diagonal elements
Zn;Znn from Eq. (4.4) with the anomalous dimensiongn

=D̃m ln Zn.
Finally, consider irreduciblelth rank operators of the form

Fnl = ]i1
u ¯ ]i l

us]iu]iudp + ¯ , n = l + 2p, s5.3d

with dF=0, dF
v=−n/2 (note thatFn0=Fp). Here the ellipses

stand for the appropriate subtractions involving the Kro-
neckerd symbols, which ensure that the resulting expres-
sions are traceless with respect to any given pair of indices,
for example,]iu] ju−di j]ku]ku /d. Of course, the numbersn
and l have the same parity, that is, they can only be simulta-
neously even or odd. As for the operators(5.2), one can
show that the operators(5.3) mix only with each other in
renormalization, the corresponding renormalization matrix is
triangular, the critical dimensions are determined by its diag-
onal elementsZnl, and the anomalous dimensions aregnl

=D̃mln Znl.
One important remark is relevant here. The matrix ele-

mentsZn for the operatorsFn andZnl for Fnl are determined
by the 1-irreducible correlation functionskFu¯ul1-ir, in
which the number of the fieldsu equals their number in the
operatorF. It is easily seen that the corresponding Feynman
diagrams do not involve the bare propagatorkuul0 from Eq.
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(2.6), and, hence, the correlation function of the scalar ran-
dom noise(1.3). As a result, the critical dimensions of the
operators(5.2) and (5.3) are completely independent of the
form of the scalar forcing in Eq.(1.2). We also note that for
the same reason the operators(5.3) with equaln and different
l do not mix in renormalization: this is forbidden by SOsdd
symmetry, which is present in the relevant diagrams even if
the correlation function(1.3) is anisotropic.

In contrast to(4.5), the critical dimensionsDn andDnl of
the operators(5.2) and (5.3) are nontrivial; they are calcu-
lated as series in«:

Dnl = o
k=1

`

«kDnl
skd s5.4d

(of course,Dp=Dn0 with n=2p). An important exception is
provided by the dimension of the operatorF1=s]iu]iud, the
local dissipation rate of the scalar fluctuations, which can be
found exactly; see below. The calculation to the order«2

(two-loop approximation) will be presented in Sec. VII in
detail, and here we give only the first order result:

Dnl
s1d = −

nsn − 2d
3sd + 2d

+
sd + 1dlsd + l − 2d
3sd − 1dsd + 2d

. s5.5d

Expression(5.5) was already presented in[29]. It differs
only by an overall factor from its analog for Kraichnan’s
model [9,29] or the Gaussian model with finite correlation
time [29].3

The resultD1=D20=0 in Eq. (5.5) is in fact valid to all
orders in«. This can be demonstrated using the Schwinger
equation of the form

E DF dfusxdexpSRsFd + AFg/du8sxd = 0, s5.6d

whereSR is the renormalized action(3.2) and the notation
introduced in(2.3) is used.(We recall that in the general
sense of the term, Schwinger equations are any relations stat-
ing that any functional integral of a total variational deriva-
tive vanishes; see, e.g., Ref.[59].) Equation (5.6) can be
rewritten in the form

kku8Duu − ¹tfu2/2g + nZuZn]
2fu2/2g − nZuZnF1llA

= − Au8dWRsAd/dAu, s5.7d

where Du is the correlation function(1.3), kk¯llA denotes
the averaging with the weight expfSRsFd+AFg , WR is deter-
mined by Eq.(2.3) with the replacementS→SR, and the
argumentx common to all the quantities is omitted.

The quantitykkFllA is the generating functional of the
correlation functions with one operatorF and any number of
fields F, therefore the uv finiteness of the operatorF is
equivalent to the finiteness of the functionalkkFllA. The

quantity on the right-hand side of Eq.(5.7) is uv finite (a
derivative of the renormalized functional with respect to the
finite argument), and so is the operator in its left-hand side.
Our operatorF1 does not admix in renormalization to the
operatoru8Duu (F1 contains too many fieldsu) and to the
operators¹tfu2/2g and]2fu2/2g (they have the form of total
derivatives, andF1 does not reduce to such a form). On the
other hand, the operatoru8Duu does not admix toF1 (it is
nonlocal, andF1 is local), while the derivatives¹tfu2/2g and
]2fu2/2g do not admix toF1 owing to the fact that each field
u enters in the counterterms of the operatorsFn only in the
form of the derivative]u (see above). Therefore, all three
types of operators entering into the left-hand side of Eq.(5.7)
are independent, and they must be uv finite separately.

Since the operatornZuZnF1 is uv finite, it coincides with
its finite part, i.e.,nZuZnF1=nF1

R, which along with the rela-
tion F1=Z1F1

R gives Z1
−1=ZuZn and thereforeg1=−gu−gn.

We recall that at the fixed pointgn
* =2« /3 and gu

* =0 (the
latter equality follows from the relationbu=−ugu and u*
.0), so thatg1

* =−2« /3. From the relations(4.4) and Table I
one obtainsDn=2n« /3+gn

* . Combining these expressions
gives the desired exact resultD1=0. It will be used later to
prove the absence of anomaly for the second-order structure
function. What is more, it can be used to essentially simplify
the calculation of the other dimensionsDnl to order«2; see
Sec. VII.

VI. OPERATOR PRODUCT EXPANSION AND COMPOSITE
OPERATORS

The representation(4.6) describes the behavior of the cor-
relation functionGsrd for Lr @1 and any fixed value ofmr.
In particular, for the structure functions(1.1) using the data
from Table I, Eq.(4.5), and the definitionsg0=D0/n0

3=L2«

one obtains

Snsr d = D0
−n/2rnDnjnsmrd. s6.1d

For our model, odd structure functions vanish, but they be-
come nontrivial if, for example, the random force in Eq.
(1.2) is replaced by an imposed constant gradient. The iner-
tial range corresponds to the additional condition thatmr
!1. The form of the functionjsmrd is not determined by the
RG equations themselves; in the theory of critical phenom-
ena, its behavior formr→0 is studied using the well-known
Wilson operator product expansion; see, e.g., Refs.[15,16].
This technique is also applicable in the theory of turbulence
[16,43–45].

According to the OPE, the equal-time random quantity in
the left-hand side of Eq.(1.1) at x;sx1+x2d /2=const and
r ;x1−x2→0 can be represented in the form

fust,x1d − ust,x2dgn = o
F

CFsr dFst,xd, s6.2d

where the functionsCF are the Wilson coefficients regular in
m2 and F are various composite operators(more precisely,
see below).

In general, the operatorsF entering an expansion like
(6.2) are all possible renormalized local operators, allowed

3More precisely, the first order result forDnl in Kraichnan’s model
is obtained from Eqs.(5.4) and (5.5) after the substitution«
→3j /2, wherej is the exponent in the velocity-velocity correlation
function kvvl~dst− t8d /kd+j. Thus for the “physical” values(«=2
andj=4/3) they coincide.
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by the symmetry of the model and the quantity in the left-
hand side. In practice, they can be found as the monomials
which appear in the corresponding Taylor expansions, and all
possible operators that admix to them in renormalization. If
these operators have additional vector indices, they are con-
tracted with the corresponding indices of the coefficientsCF.

With no loss of generality it can be assumed that the ex-
pansion in Eq.(6.2) is made in the operators with definite
critical dimensionsDF. The structure function(1.1) in renor-
malized variables is obtained by averaging Eq.(6.2) with the
weight expSR with SR from Eq.(3.2); then the quantitieskFl
appear on the right hand side. Their asymptotic behavior for
m→0 is found from the corresponding RG equations and has
the form kFl~mDF.

Combining the operator product expansion(6.2) with the
asymptotic representation(6.1) we therefore find the follow-
ing expression for the scaling functionsjnsmrd in the region
mr!1:

jnsmrd = o
F

AnFsmrdDF, s6.3d

with the coefficientsAnFsmrd regular insmrd2.
Obviously, the leading term of the asymptotic behavior of

the function(6.3) for smrd!1 is determined by the operator
with the minimal dimensionDF. The following additional
considerations should be taken into account.

(i) With no loss of generality, it can be assumed that the
expansion(6.2) is made in irreducible traceless tensor com-
posite operators. In the isotropic case, the mean values of all
nonscalar irreducible operators vanish, and their dimensions
do not appear in the right-hand side of Eq.(6.3).

(ii ) Owing to Galilean invariance of the model and the
structure functions(1.1), only invariant operators appear in
the expansion(6.2).

(iii ) The action functional(2.1) and the functions(1.1)
are invariant with respect to the shiftu→u+const, and the
operators on the right-hand side of Eq.(6.2) must also be
invariant. This means that they can involve the fieldsu only
in the form of (covariant) derivatives]iu or ¹tu.

(iv) Using the linearity of Eq.(1.2) in the fieldu, one can
show that for any operatorF that appears in an expansion
like (6.2), the number of fieldsu cannot exceed their total
number on the left-hand side.

Finally, we recall thatDF=dF+Os«d. Thus we may con-
clude that, at least for small«, the leading terms in the small-
smrd behavior for the even functionS2n is given by one of the
operatorsFk from Eq. (5.2) with køn. Indeed, any addi-
tional derivative or a field different fromu leads to an in-
crease of the dimensionDF; the operatorsFk with k.n are
forbidden by the property(iv), while the operators containing
more fields than derivatives are forbidden by(iii ). From the
explicit form (5.5) it follows that the dimensionDk mono-
tonically decreases ask grows. We finally conclude that the
leading term in(6.3) is given by the contribution of the op-
eratorFn from (5.2) and

S2n = D0
−nr−2nDusmrdDn ~ rn+gn

*
s6.4d

with the dimensiongn
* defined above Eq.(5.3).

This establishes the existence of anomalous scaling for
the passive scalar field in our model with the identification
z2n=−2nDu+Dn=n+gn

* ; see text below Eq.(1.1).
If large-scale anisotropy is introduced to the problem by

the correlation function of the scalar noise(1.3), the tensor
operators acquire nonzero mean values and their dimensions
also appear on the right-hand side of the expansion(6.3). An
lth rank irreducible operator gives rise to a term injsmrd
proportional to the spherical harmonicsYlm for d=3 or their
analogs for generald. In the special case of uniaxial aniso-
tropy, when the functionC in Eq. (1.3) depends on a fixed
unit vectorn in addition tor , they reduce to terms propor-
tional to the Gegenbauer polynomialsPl (Legendre polyno-
mials for d=3).

Repeating the above analysis we conclude that the leading
term in the lth anisotropic sector of the scaling function
jsmrd for mr!1 is determined by thelth rank tensor opera-
tor Fnl (5.3) with the dimensionDnl from (5.5). In particular,
for the case of uniaxial anisotropy

Sn ~ ¯ + Plscosqdrn+gnl
*

+ ¯ , s6.5d

wheregnl
* is defined in Sec. V below Eq.(5.3), q is the angle

between the directionsn andr , and the ellipses stand for the
contributions of the other anisotropic sectors. It remains to
note that the odd functionsS2n+1 are nontrivial if, for ex-
ample, the random force in Eq.(1.2) is replaced by an im-
posed constant gradient, and their leading terms are then de-
termined by the vector operatorsF2n+1,1.

VII. CALCULATION OF THE CRITICAL DIMENSIONS
OF OPERATORS Fnl IN THE TWO-LOOP

APPROXIMATION

A. General scheme and the relevant diagrams

From now on, we shall consider composite operators(5.3)
in the model without the scalar noise in Eq.(1.2), that is,
with Du=0 in the action functional(2.1). The stirring force in
Eq. (1.4), that is, the term withDv in the action functional
(3.2), should be retained. Then the operators(5.3) are renor-
malized multiplicatively,Fnl=ZnlFnl

R; see Sec. V. The renor-
malization constantsZnl=Znlsg,u,d,«d are determined by the
requirement that the 1-irreducible correlation function

kFnl
Rsxdusx1d ¯ usxndl1-ir = Znl

−1kFnlsxdusx1d ¯ usxndl1-ir

; Znl
−1Gnlsx;x1,…,xnd s7.1d

be uv finite in renormalized theory(3.2) and(3.3), i.e., have
no poles in« when expressed in renormalized variables(3.5).
This is equivalent to the uv finiteness of the product
Znl

−1Gnlsx;ud, in which

Gnlsx;ud =
1

n!
E dx1 ¯E dxnGnlsx;x1,…,xndusx1d ¯ usxnd

s7.2d

is a functional of the fieldusxd. In the zeroth approximation,
the functional(7.2) coincides with the operatorFnlsxd, and in
higher orders the kernelGnlsx;x1,… ,xnd is given by the sum
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of diagrams shown in Fig. 1 up to the two-loop order with
their symmetry coefficients(coefficients of the diagrams 2,
4, and 6 are equal to unity, while coefficients of the diagrams
8 and 9 are nontrivial, but they are not shown because we
will not need them; see below). The dashed lines denote the
propagators(2.4), while the solid lines denote the propaga-
tors (2.6); the slashed ends correspond to the auxiliary fields
v8 andu8, the ends without a slash correspond to the fieldsv
and u. Since we are working with the renormalized theory,
the replacementsn0→n , k0→un should be made in the de-
nominators of Eqs.(2.4) and (2.6), and the amplitude in
kvvl0 should be expressed in renormalized variables:D0

=gm2«n3 (see text below Eq.(3.5)). The diagrams 1–7 in-
volve only the vertex(2.7) while the diagrams 8 and 9 also
involve the vertex(2.5). One dashed line attached to any of
the vertices(2.5) must be slashed; there are two variants for
the diagram 8 and three variants for diagram 9. We do not
show these variants explicitly(and do not show the slashes
and symmetry coefficients for these diagrams), because, as
we shall see below, the total contribution of the diagrams 2,
6, 8, and 9 can be found without the practical calculation of
their individual contributions.

The thick dots in the diagrams correspond to the vertices
of the composite operatorFnl from Eq. (5.3). According to
the general rules of the universal diagrammatic technique
(see, e.g., Ref.[59]), for any composite operatorFsxd built of
the fieldsu, the vertex withkù0 attached lines corresponds
to the vertex factor

Vksx;x1,…,xkd ; dkFsxd/dusx1d ¯ dusxkd. s7.3d

The argumentsx1¯xk of the quantity(7.3) are contracted
with the arguments of the upper ends of the lineskuu8l0

attached to the vertex. For our operators(5.3), built solely of
the gradientswisxd;]usxd /]xi at a single spacetime pointx,
the factors (7.3) contain the product]i1

dsx−x1d¯]ik
dsx

−xkd, and the integrations overx1¯xk are easily performed:
the derivatives move onto the upper ends of the correspond-
ing lines kuu8l0 attached to the vertex, and their arguments
x1¯xk are substituted withx. After the derivatives have been
moved inside the diagram, the remaining vertex factor for
the operatorFsxd can be understood as the usual derivative:

Vi1¯ik
sxd = ]kFsxd/] wi1

sxd ¯ ] wik
sxd. s7.4d

The analysis of the diagrams shows that for any argument
xs in the quantity(7.2), the corresponding spatial derivative
is isolated as an external factor from each diagram. Using the
integration by parts, these derivatives can be moved onto the
corresponding fieldsusxsd, so that the quantity(7.2) can be
represented as a functional of the vector fieldwi =]iu:

Gnlsx;ud =
1

n!
E dx1 ¯E dxnG̃n

i1¯in

3sx;x1,…,xndwi1
sx1d ¯ win

sxnd. s7.5d

The diagrams that determine the kernelG̃ in (7.5) contain
only logarithmic uv divergencies. Therefore, in order to find

the constantZnl
−1 it is sufficient to calculate the functionalG̃

with some special choice of its functional argumentwi,
namely, one can replace it by its value at the fixed pointx,
the argument of the operatorFnl in Eqs.(7.1). Now the prod-
uct wi1

sxd¯win
sxd can be taken outside the integrals over

x1,… ,xn in Eq. (7.5), so that the functionalGnlsx;ud turns
into a local composite operator. The integration of the re-

maining functionG̃nl overx1,… ,xn gives a quantity indepen-
dent of any coordinate variables, and its vector indices can
only be those of Kroneckerd symbols. Their contraction
with the indices of the productwi1

sxd¯win
sxd gives rise to

the original operatorFnlsxd with some scalar coefficientḠ.
The integration overx1,… ,xn means that in the Fourier rep-
resentation, the corresponding correlation function is calcu-
lated with all its momenta set equal to zero, which is always
implied in what follows. The ir regularization is provided by
the parameterm in the function(1.5). In a compact notation
one can write

Znl ; ZF, Fnlsxd ; F, Gnlsx;ud ; G = FḠ. s7.6d

In the MS scheme all renormalization constants have the
form

ZF = 1 +o
k=1

`

ZF
skd«−k, s7.7d

where the coefficientsZF
skd=ZF

skdsg,u,dd are independent of«.
Then for the corresponding anomalous dimensiongF from
the definitions(3.7) and relations(3.8) for the b functions

one obtains gF;D̃m ln ZF=fbg]g+bu]ugln ZF=−2DgZF
s1d

+terms containing poles in« (we recall thatDg=g]g). How-
ever, the pole parts must cancel each other owing to the uv
finiteness of the anomalous dimensiongF. We therefore ar-
rive at the expression

gF = − 2DgZF
s1d, s7.8d

that is, in order to find the dimensiongF it is sufficient to find
the first-order residueZF

s1d in the expansion(7.7). If desired,
the higher-order residuesZF

skd with kù2 can be calculated to
check the aforementioned cancellation(and thus the correct-
ness of the calculations).

FIG. 1. Diagrams of the functionG from Eq. (7.2) in the one-
loop and two-loop approximations.
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Now we turn to the practical calculation of the diagrams
needed to determine the coefficientsZnl

s1d in the constantsZnl
from Eq. (7.1) to orderg2 (two-loop approximation).

B. Scalarization of the diagrams and contractions of basic
tensor structures

The contribution of a specific diagram into the functional
G in Eq. (7.5) for any composite operatorF, built of the
gradientswi =]iu, is represented in the form

G = V12̄ I12̄
ab̄ wawb ¯ , s7.9d

whereV12̄ is the vertex factor(7.4), I12̄
ab̄ is the “internal

block” of the diagram with free indices, the productwawb¯

corresponds to external lines. The numerical indices 1,2,…
will always be understood asi1, i2,…; their number in Eq.
(7.9) equals the number of the letter indicesa, b,… and is
determined by the number of “rays,” that is, the numberk of
lines that attach to the vertex of the operator. These lines are
given by products of the propagatorskuu8l0 from Eq. (2.6)
and are connected by the lineskvvl0 and kvv8l0 from Eq.
(2.4); see examples in Fig. 1. For the two-loop calculation, it
is sufficient to consider diagrams withk=2 and 3, because
the diagram 5 withk=4 factorizes into products of the blocks
with k=2 and, therefore, gives no contribution to the first-
order residueZF

s1d. [This is true only if the ir regularization in
the correlator(1.5) is provided by the sharp cutoff atk=m
;1/,, so that the one-loop integral is a pure pole in«; see
Eq. (7.21) below. If the regularization is provided, e.g., by
the substitutionk2→k2+m2 in Eq. (1.5), the one-loop inte-
gral contains anOs«0d term, the diagram 5 contains a first
order pole in« and contributes toZF

s1d. However, the total
value ofZF

s1d in the MS scheme is independent of the choice
of ir regularization.]

Since the vertex factor(7.4) and the productwawb¯ are
symmetrical with respect to any permutations of their indi-
ces, the quantityI12̄

ab̄ in Eq. (7.9) is automatically symme-
trized with respect to any permutations of the letter indices
a, b,… and the numerical indices 1,2,… . In what follows,
such symmetrization will be denoted by the symbolS. For
any fixed number of raysk, the quantityS I is represented as
a linear combination

S I = o
i

BiSi s7.10d

of certain basis tensor structuresSi =sSid12̄
ab̄ with certain nu-

merical coefficientsBi. There are two such structures for the
k-ray diagrams withk=2 and 3; they have the forms

S1 = Sfd1ad2bg, S2 = Sfd12dabg for k = 2, s7.11ad

S1 = Sfd1ad2bd3cg, S2 = Sfd12dabd3cg for k = 3.

s7.11bd

The quantities that will be directly calculated from the
diagrams are not the coefficientsBi themselves, but the fol-
lowing scalar quantities related to them:

Ai = trfsSid12̄
ab̄ S I12̄

ab̄ g = trfSi ·S Ig, s7.12d

where the symbol tr denotes the contraction with respect to
all repeated indices, which will not be shown explicitly. It is
therefore necessary to express the coefficientsBi in Eq.
(7.10) in terms of the quantities(7.12). We omit the deriva-
tion, which is identical to the case of the Kraichnan model
(see Ref.[19] for details) and give only the answer:

B1 = 2a2fdA1 − A2g, B2 = a2f− 2A1 + sd + 1dA2g

with a2 ; fsd − 1ddsd + 2dg−1 for k = 2, s7.13ad

B1 = 6a3fsd + 2dA1 − 3A2g, B2 = 9a3f− 2A1 + sd + 1dA2g

with a3 ; fsd − 1ddsd + 2dsd + 4dg−1 for k = 3.

s7.13bd

The next step is the contraction of the quantitiesI12̄
ab̄ in

Eq. (7.9) with external factors: the vertex factorV12̄ of the
composite operator and the productwawb¯. Again, the deri-
vation is identical to the case of the Kraichnan model(see
[19] for details) and we only give the result:

G = FḠ, Ḡ = o
i

kiBi , s7.14d

where we use the notation(7.6) and the coefficientski have
the forms

k1 = nsn − 1d, k2 = lnl

wherelnl = sn − ldsd + n + l − 2d for k = 2,

s7.15ad

k1 = nsn − 1dsn − 2d, k2 = sn − 2dlnl for k = 3.

s7.15bd

Finally, combining Eqs.(7.13) and (7.15) we express the
function G in the scalar quantitiesAi:

Ḡ = o
i

piAi , s7.16d

where

p1 = 2a2fnsn − 2dsd − 1d + llg,

p2 = a2fnsn + ddsd − 1d − sd + 1dllg for k = 2,

s7.17ad

p1 = 6a3sn − 2dfnsn − 4dsd − 1d + 3llg,

p2 = 9a3sn − 2dfnsn + ddsd − 1d − sd + 1dllg for k = 3

s7.17bd

with A1,2 from Eq. (7.12), a2,3 from Eq. (7.13), andll = lsl
+d−2d. Note that the coefficientspi in Eq. (7.17b) vanish for
n=2 (in general, the diagrams withk rays give no contribu-
tion to the functionsG for the operatorsFnl with n,k). Also
note that the coefficientp1 in Eq. (7.17a) vanishes forn
=2, l =0; this fact will be important in what follows.
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C. General relations for the anomalous dimensions

Let us denote byR;ZF
s1d the first order coefficient in the

expansion(7.7) for the renormalization constantZF. In the
perturbation theory, it is calculated as the seriesR
=os=1

` gsRs in powers of the renormalized coupling constant
g, with coefficientsRs depending onu and d. In their turn,
they can be written as the sumsRs=ok=2Rs

skd, whereRs
skd is

the total contribution of the diagrams withk rays. As illus-
trated by Fig. 1, the number of terms in the latter sum is
always finite: fors=1, there is only the contribution withk
=2, for s=2, there are contributions withk=2 and 3, and so
on. Similar decompositions can be written for the coeffi-
cients in front of the 1/« contributions to the scalar quanti-
ties Ai in Eq. (7.12). The corresponding coefficients will be
denoted byais

skd, wherei =1, 2 is the number of structures,s is
the order ing, andk is the number of rays. From the defini-
tion of the constantsZF and expressions(7.6) and (7.9) it
follows that, at the same time,ais

skd is the total contribution of
the ith structure to the quantityRs

skd, that is,Rs
skd=oipi

skdais
skd.

Herepi
skd are the coefficients(7.17) in which the numbers of

rays are explicitly shown.
We shall calculate the firstR1 and the secondR2 terms

(two-loop approximation), which involves diagrams with
two and three rays. Using the above definitions, expressions
(7.8) and (7.17a), and neglecting the terms of orderg3 and
higher, we can write the following representation to the two-
ray contributiongF

s2d to the anomalous dimensiongF;gnl at
the fixed point(4.1):

gF
s2d = − 2hp1fg*a11

s2d + 2g*
2a12

s2dg + p2fg*a21
s2d + 2g*

2a22
s2dgj

s7.18ad

with the coefficientsp1,2 from Eq. (7.17a). Similarly, for the
three-ray contribution one can write

gF
s3d = − 4g*

2hp1a12
s3d + p2a22

s3dj s7.18bd

with p1,2 from Eq. (7.17b). Since diagrams with three rays
appear only in orderg2, the contribution of orderg in the
latter expression is absent. We recall that the quantitiesais

skd

depend onu and d. In Eqs.(7.18a) and (7.18b), the substi-
tution u=u* is implied.

The quantities(7.18a) and(7.18b) should be calculated up
to the order«2. The contributiongF

s3d is of orderg2, so that in
Eq. (7.18b) it is sufficient to take the coordinatesg* , u* of
the fixed point in the lowest-order approximation:g*

=g*
s1d« , u* =u*

s0d with g*
s1d , u*

s0d from Eq.(4.3). [We recall that
the upper indices forg* and u* denote the orders of the
expansion in«; see Eq.(4.2).] The contributiongF

s2d contains
terms of orderg andg2. Therefore, in Eq.(7.18a) one should
take into account the leading correction terms to the coordi-
nates of the fixed point, denoted asg*

s2d andu*
s1d in Eq. (4.2).

We are going to show, however, that the quantity(7.18a) can
in fact be calculated without knowledge of the coefficients
g*

s2d , u*
s1d , a21

s2d, anda22
s2d.

We recall that the dimensiongnl
* for n=2, l =0 is known

exactly:g1
* ;g20

* =−2« /3; see the end of Sec. V. This dimen-
sion is completely determined by the two-ray contribution
gF

s2d from Eq. (7.18a), while gF
s3d for n=2 vanishes. The co-

efficient p1 in Eq. (7.17a) for n=2, l =0 vanishes, whilep2
remains nontrivial:p2=2/d. Thus from Eq.(7.18a) we im-
mediately find the following exact answer for the quantity in
the second square brackets:

fg*a21
s2d + 2g*

2a22
s2dg = d«/6. s7.19d

This means that the only contribution that survives in the
left-hand side is«g*

s1da21
s2duu=u

*
s0d, while theOs«2d contributions

with g*
s2d , u*

s1d, and a22
s2d must cancel each other. In order to

verify the validity of our calculations, we checked this can-
cellation for d=3. All the dependence onn and l in Eqs.
(7.18a) and (7.18b) comes from the coefficientsp1,2, so that
the expression(7.19) determines the contribution in the sec-
ond square brackets in(7.18a) for all n and l.

Since for n=2 and l =0 the coefficientp1 vanishes, the
exact answer forg20

* gives no information about the quantity
in the first square brackets. However, from the explicit ex-
pression for the only one-loop diagram in Fig. 1 it is not
difficult to see that the corresponding structureA1 vanishes
identically, so thata11

s2d=0 in Eq.(7.18a). Indeed, in the quan-
tity A1 the upper(letter) indices of the tensorI12̄

ab̄ in Eq.
(7.9) are contracted with its lower(number) indices. In the
one-loop diagram this leads to the contraction of the mo-
menta at the vertex(7.3) with the transverse projector in the
correlatorkvvl0 from Eq. (2.4), which depends on thesame
momentum:Pijskdki =0.

Therefore, the quantity in the first square brackets appears
in fact Osg2d and, as forgF

s3d, the coordinatesg* and u*

should be substituted into it only in the leading-order ap-
proximations(4.3).

It remains to note that for the diagrams 2, 6, 8, and 9 the
structuresA1 also vanish; the mechanism is the same as for
the one-loop diagram. Therefore, there is no need to calcu-
late these diagrams at all: their nonvanishing contributions
A2 are known exactly from(7.19) without practical calcula-
tion.

D. Calculation of the scalar quantitiesAi

We shall not discuss the calculation of the scalar quanti-
ties Ai from Eq. (7.12) for the all diagrams from Fig. 1 in
detail, because this definitely would exceed the readers’ pa-
tience, and give only examples and general ideas. It has
much in common with the analogous calculation for Kraich-
nan’s model, discussed in Ref.[19] up to the three-loop level
in great detail. The present calculation differs from that of
[19] in a few respects.

(i) Diagrams 8 and 9 involve the propagatorskv8vl0 from
Eq. (2.4) and the vertexv8vv from Eq.(2.5); they are absent
for the case of a Gaussian velocity field(including, of course,
the case of Kraichnan’s model).

(ii ) Diagrams 6 and 7 are present for any Gaussian veloc-
ity field with finite correlation time. However, for Kraich-
nan’s model they effectively contain closed circuits of re-
tarded propagatorsku8ul0 and therefore vanish. It is crucial
here that for Kraichnan’s model the velocity correlator con-
tains thed function in time. In our case, the velocity has
finite correlation time and these diagrams give nonvanishing
contributions.
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(iii ) In Kraichnan’s case, the diagram 2 and, in general,
all diagrams with the self-energy insertions are easily taken
into account: it is sufficient just to drop them, and in the
remaining diagrams to replace the bare viscosityn0 with its
exact analog; see Ref.[29]. This is a consequence of the fact
that, in Kraichnan’s case, the self-energy(that is, nontrivial
part of the 1-irreducible functionku8ul1-ir) is exactly given
by the simplest one-loop diagram(the other contain closed
circuits of retarded propagators and vanish). That diagram
does not depend on its frequency argument and is simply
proportional to p2, its squared momentum argument, and
thus its contribution only leads to a certain redefinition of the
viscosity coefficient.

In the case at hand, the one-loop self-energy diagram is a
nontrivial function ofp and the calculation of such diagrams
also becomes nontrivial. In higher orders, diagrams with
multiloop self-energy insertions(absent for Kraichnan’s
case) will also appear.

(iv) Diagrams 3 and 4 are present and nontrivial both for
our model and for Kraichnan’s case(as well as for the
Gaussian model with finite correlation time). Of course, the
corresponding analytical expressions are different in these
two cases due to the difference in the explicit forms of the
correlation functionskv8vl0. In particular, all their contribu-
tions for the zero correlation time are expressed in terms of
hypergeometric functions(see Ref.[13]) while for our case
this is no longer true(see below).

(v) In Kraichnan’s model, the value ofg* was given by
the one-loop approximation exactly; in our case, the higher-
order contributions are nontrivial and should be taken into
account.

As we have seen in Sec. VII C, in the two-loop approxi-
mation the total effect of the diagrams 2, 6, 8, and 9 and of
the Os«2d contribution in g* can be found from the exact
identity (7.19) without the practical computation, but in the
three-loop and higher orders the items(i), (iii ), and (v) be-
come nontrivial.

Consider the calculation of the one-loop diagram 1 in Fig.
1. Using the explicit forms of the propagators and vertices in
(2.6) and(2.7) and the definition we obtain(in renormalized
variables)

I12
ab =

1

2
E dv

s2pd E dk

s2pddkakb
gm2«n3P12skdk4−d−2«

sv2 + n2k4d

3
1

sv2 + u2n2k4d

=
gm2«

4usu + 1d E dk

s2pdd

kakb

k2 P12skdk−d−2«, s7.20d

where the factor 1/2 in front of the integral is the symmetry
coefficient(see Fig. 1) and the three factors in the integrand
come from the vertex of the composite operator, the propa-
gator kvvl0 of the velocity field, and the product of two
propagatorsku8ul0, respectively. The second equality in
(7.20) is the result of elementary integration overv. Obvi-
ously, A1= Iab

ab=0, the fact already mentioned in Sec. VII C,
while for A2= Ibb

aa one obtains

A2 =
gm2«S̄dsd − 1d

4usu + 1d E
m

` dk

k1+2« =
gS̄dsm/md2«sd − 1d

8usu + 1d«

s7.21d

with S̄d from Eq. (3.4); the pole part of this expression is
simply obtained by the replacementsm /md2«→1. Substitut-
ing this expression into(7.18a) along with the expressions
(4.3) for the fixed points gives the one-loop result(5.5).

Now let us turn to the calculation of the two-loop dia-
grams 2–7 in Fig. 1. These depend on two integration mo-
mentak and q and two frequencies, which can always be
assigned to the twokvvl0 lines of a diagram. The integrations
over the frequencies(or, equivalently, the times in the time-
momentum representation) are always elementary. The result
can be interpreted as a sum of terms, each of which corre-
sponding to one possible “temporal version” of the diagram;
different temporal versions correspond to all possible order-
ings of the integration times in the diagram. To each version
corresponds an “energy denominator,” given by the product
of the factors corresponding to all “temporal cross sections”
of the diagram; to each cross section corresponds the sum of
“energies” Ek =nk2 for all intersectedkvvl0 or kv8vl0 lines
andEk =unk2 for kuu8l0 lines. Thus, with some experience, it
is possible to write down the result of the temporal integra-
tion without performing the actual integration. As a typical
example, we give the result of temporal integration for the
quantity I12

ab corresponding to the diagram 3:

I12
ab =

sgm2«d2

4us1 + uds2pd2d

3E E dk dq

skqdd+2«

sk + qdask + qdbqiqjPijskdP12sqd
q2sk + qd2fk2 + uq2 + usk + qd2g

3H 1

fk2 + q2 + usk + qd2g
+

1

uq2J; s7.22d

now the corresponding scalar quantitiesAi are easily ob-
tained. It is convenient to represent the denominators as
products of simpler factors, and to combine the quantitiesAi
corresponding to different diagrams; this sometimes leads to
noticeable simplifications of the integrands. With only one
exception[see Eq.(7.32) below], all these quantities can be
reduced to linear combinations of the following “basis” sca-
lar integrals:

1

s2pd2d E E dk dq

skqdd+2«

sk ·qdsin2pq

k2 + q2 + 2bsk ·qd
;

S̄d
2m−4«

8«
C2psbd,

s7.23d

where the parameterb takes different values:b=1, b
=u/ s1+ud, or b=fu/2s1+udg1/2, while p=1, 2, and 3, andq
denotes the angle between the vectorsq and k, so that
sk ·qd=kqcosq. (We do not discuss much simpler integrals,
e.g., those that can be factorized into two independent inte-
grals overk andq, and so on.) The integrands in Eq.(7.23)
involve three independent parameters, the modulik and q
and the angleq, so that the integrals can be written as

ANOMALOUS SCALING OF A PASSIVE SCALAR… PHYSICAL REVIEW E 71, 016303(2005)

016303-13



1

s2pd2d E dk E dq Fsk,q,qd

= S̄d
2E dk kd−1E dq qd−1kFsk,q,qdl

where the angular brackets denote the angular averaging over
the unit sphere ind dimensions normalized such thatk1l=1.
Let us expand the integrands in Eq.(7.23) in b or, equiva-
lently, in the scalar productsk ·qd=kqcosq. In each term of
the resulting expansion, the integrations over the angles can
be computed using the following formulas:

kcos2nql =
s2n − 1d ! !

dsd + 2d ¯ sd + 2n − 2d
, s7.24d

with n=1,2,… . The remaining integrals over the moduli
have the forms

Insmd ; E
m

` dk

k1+2«E
m

` dq

q1+2«S kq

k2 + q2D2n+2

= m−4«Ins1d.

s7.25d

Using the identity

Insmd = −
1

2«
DmInsmd, Dm ; m] /] m, s7.26d

which follows from the last equality in Eq.(7.25), the inte-
gral Insmd can be represented in the form

Insmd =
m−4«

2«
E

1

` dk

k1+«S k

k2 + 1
D2n+2

, s7.27d

that is, the number of integrations is reduced and the pole in
« is isolated explicitly. We need only the pole part of the
integral Ins1d, which now is simply obtained by setting«
=0 in the integrand of Eq.(7.27). The resulting integral is
easily calculated:

Ins1d =
1

8«

sn ! d2

s2n + 1d!
+ Os«0d. s7.28d

Thus we have represented the pole part of the integrals
(7.23) as infinite series with known coefficients. It is not
difficult to see that these series can be reduced to the hyper-
geometric function

Fsa,b;c;zd ; 1 +
ab

c
z+

asa + 1dbsb + 1d
csc + 1d

z2

2!
+ ¯ ,

s7.29d

namely, for the quantitiesC2psbd defined in Eq.(7.23) one
obtains

C2psbd =
− Gsd/2dGsd/2 − 1/2 +pd

Gsd/2 − 1/2dGsd/2 + 1 +pd
bFs1,1;d/2 + 1

+ p;b2d, s7.30d

with Euler’s G function. For the first special values ofp this
gives

C2sbd =
2s1 − dd
dsd + 2d

bFs1,1;d/2 + 2;b2d,

C4sbd =
2s1 − d2d

dsd + 2dsd + 4d
bFs1,1;d/2 + 3;b2d,

C6sbd =
2s1 − d2dsd + 3d

dsd + 2dsd + 4dsd + 6d
bFs1,1;d/2 + 4;b2d,

s7.31d

and so on. The integral

1

s2pd2d E E dk dq

skqdd+2«

sk ·qdk2 sin4q

sk + qd2fsk + qd2 + q2 + xk2g

;
m−4«S̄d

2

2«
Jsx,dd + Os«0d s7.32d

(wherex;1/u) does not reduce to the hypergeometric func-
tion and can only be expressed in the form of a single con-
vergent integral, suitable for numerical calculation, for ex-
ample,

Jsx,dd =
s1 − d2d

2dsd + 2dsd + 4dE0

1

dz
1

s1 + zds1 + xzd2F„1,2;d/2

+ 3;s1 + zd−1s1 + xzd−1
… s7.33d

or

Jsx,dd =
Gsd/2d

ÎpG„sd − 1d/2…
E

0

1

dz
s1 − z2dd/2

sx − 1d2 + 4xz2

3Hz2s1 − z2d1/2 lnS1 + x

2
D − zsx − 1 + 2z2darcsinz

−
zs1 − z2d1/2s1 − x − z2d

f2s1 + xd − z2g1/2

3arctanFzf2s1 + xd − z2g1/2

s1 + x − z2d GJ . s7.34d

It remains to note that in Eq.(4.3) of Ref. [30] the latter
integral is given with a misprint.

VIII. ANOMALOUS EXPONENTS TO ORDER «2

Using the techniques described in the preceding section,
we have performed a complete two-loop calculation of the
critical dimensionsDnl of the composite operators(5.3) for
arbitrary values ofn, l, and d and obtained the following
expression for the second coefficient in expansion(5.4):

Dnl
s2d =

4

9sd − 1d2sd + 2d2sd + 4d
„2sd + 4dAfnsn − 2dsd − 1d

+ llg + sn − 2dh6Bfnsn − 4dsd − 1d + 3llg

+ 9Cfnsd + ndsd − 1d − llsd + 1dgj… s8.1d

with ll ; lsd+ l −2d and
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A =
sx − 1 − 1/xdsd + 1d

2sd + 2ds1 − xd

+
sd + 1d

2sd + 4ds1 − xdxs1 + xd2F3S 1

sx + 1d2D
+

2xdsd + 2d
s1 − dds1 − xd

Jsx,dd,

B =
sd + 1d

3s1 − xd2sd + 4dF x

x + 1
F3S 1

2sx + 1dD
−

1

sx + 1d2F3S 1

sx + 1d2D −
x2

4
F3S1

4
DG ,

C =
1

9s1 − xd2H3x2sd − 1d
4

F2S1

4
D

−
xf2d − 1 +xsd − 2dg

sx + 1d
F2S 1

2sx + 1dD
+

fd + 1 + 2xsd − 2dg
sx + 1d2 F2S 1

sx + 1d2D −
x2sd + 1d
sd + 4d

F3S1

4
D

+
4xsd + 1d

sx + 1dsd + 4d
F3S 1

2sx + 1dD
−

4sd + 1d
sx + 1d2sd + 4d

F3S 1

sx + 1d2DJ . s8.2d

HereJsx,dd is the integral(7.34), x;1/u*
s0d with u*

s0d from
Eq. (4.3), andFkszd;Fs1,1;d/2+k;zd is the hypergeomet-
ric function (7.29). The values ofFk entering into Eq.(8.2)
can be related by the recurrent relation

sz− 1dF2szd = zsd + 2dF3szd/sd + 4d − 1,

but the resulting expressions look more cumbersome and we
have kept bothF2 andF3 in the formulas.

Contributions withA , B, andC in Eq. (8.1) come from
the structuresA1 with k=2, A1 with k=3, andA2 with k=3,
respectively. The structureA2 with k=2 gives no contribution
to Dnl

s2d, as discussed in Sec. VII C in connection with Eq.
(7.19). For the most interesting cased=3 one obtains

A = − 0.902 39, B = − 0.135 498,

C = 0.196 22, J = − 0.024 976. s8.3d

Expression(8.1) simplifies for the most important case of the
isotropic sector(evenn and l =0):

Dn0
s2d =

nsn − 2d
sd − 1dsd + 2d2sd + 4d

h2sd + 4dA + 6sn − 4dB + 9sd

+ ndCj. s8.4d

For the simplest nontrivial casen=4 one obtains

D40
s2d = 8s2A + 9Cd/sd − 1dsd + 2d2, s8.5d

that is, the quantityB does not enter into the result. Forn
ù6, all the coefficients(8.2) contribute to the result.

IX. DISCUSSION AND CONCLUSION

We have studied a model of a passive scalar field, gov-
erned by the diffusion-advection equation(1.2) and subject
to a large-scale random forcing(1.3). The advecting velocity
field obeys the Galilean-invariant Navier-Stokes equation
(1.4) subject to an external random force, white in time and
having a power-law spectrum proportional tok4−d−2«; see
Eqs.(1.5) and (1.6).

Using the RG and OPE methods, we have shown that the
structure functions of the scalar field display anomalous scal-
ing behavior; see Eqs.(6.4) and (6.5). The corresponding
anomalous exponentsDn are identified with the critical(scal-
ing) dimensions of certain composite fields(operators),
namely, powers of the local dissipation rate of scalar fluctua-
tions (5.2), which offers the possibility to calculate them
within a regular perturbation theory, as series in«; see Eq.
(5.4).

The calculation has been accomplished to the second or-
der,«2 (two-loop approximation), including the exponents of
anisotropic contributions(6.5). The latter are identified with
the critical dimensions of tensor composite fields built of the
scalar gradients(5.3). The first-order expressions(5.5) coin-
cide with the exponents of the well-known Kraichnan rapid-
change model(up to a simple normalization), while in the
second order they are different. As for the rapid-change
model, the second-order structure function is not anomalous.

Thus we have overcome two important limitations of the
previous treatments of the problem: absence of time correla-
tions and Gaussianity of the advecting velocity field. It is
interesting to note that both the RG mechanism of the
anomalous scaling and the results for the exponents are, in
many respects, similar to the case of the rapid-change model.
Let us compare our findings with those for the Gaussian
models.

A. Universality: Independence of the forcing and relevance of
the zero-mode picture

As we have seen, the critical dimensions of all composite
operators(5.2) and (5.3), and therefore the corresponding
anomalous exponents(including anisotropic sectors), are in-
dependent of the forcing, specified by the correlator(1.3). In
particular, this means that they remain unchanged if the stir-
ring noise in Eq.(1.2) is replaced by an imposed constant
gradient, as, e.g., in Refs.[21,29,33]. The role of the forcing
is to maintain the steady state of the system and thus to
provide nonvanishing amplitudes for the power-law terms
with those universal exponents. This behavior is already well
known for the passive scalar or vector fields, advected by the
Gaussian velocity fields with vanishing or finite correlation
time.

In the language of the RG(which is equally applicable to
the case of a zero or finite correlation time of the advecting
field) this is explained as follows: the stirring force or the
imposed gradient does not enter into the diagrams that deter-
mine the renormalization of the operators(5.2) and(5.3), so
that their dimensions appear forcing independent. Similar
diagrams determine the contributions of those operators into
the operator product expansions(6.2), which are nontrivial
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even for the unforced model. The difference is that for the
unforced model, the mean values of the operators vanish, so
that they give no contribution to the right-hand sides of rep-
resentations like(6.3). For the isotropic correlator(1.3), sca-
lar operators acquire nonzero mean values and contribute to
the right-hand side of(6.3), while for the anisotropic cor-
relator or the imposed constant gradient, the mean values of
irreducible tensor operators also become nonzero and their
contributions are “activated” in representations(6.3).

For the case of a Gaussian advecting field with vanishing
correlation time, when the equal-time correlation functions
satisfy exact closed differential equations, the above picture
it is easily understood in the language of the zero-mode ap-
proach[14]: forcing terms do not affect the corresponding
differential operators; thus the anomalous exponents, deter-
mined by the zero modes(solutions of homogeneous un-
forced equations) also appear forcing independent. On the
contrary, the amplitudes are determined by the matching of
the inertial-range zero-mode solutions with the forced large-
scale solutions, which is only possible in the presence of the
forcing terms.

The exact resemblance in the RG picture of the rapid-
change models and the finite-correlated cases suggests that
for the latter, the concept of zero modes(and thus of statis-
tical conservation laws) is also applicable, although the cor-
responding equations are not differential and involve infinite
diagrammatic series.

B. Hierarchy of anisotropic contributions

In the presence of large-scale anisotropy[that is, the an-
isotropy introduced at scales of orderL by the forcing in Eq.
(1.2)], structure functions of the scalar field can be decom-
posed in irreducible representations of thed-dimensional ro-
tation group SOsdd. Such a decomposition naturally arises
from the corresponding OPE, provided it is made in irreduc-
ible traceless tensor composite operators; the rankl of a ten-
sor operator can be used to label the terms of the SOsdd
expansion and can be viewed as the measure of anisotropy of
the corresponding term(“sector”). Thus each anisotropic sec-
tor is characterized by its own set of scaling exponents; the
leading term is given by thelth-rank composite operator with
minimal critical dimension.

Explicit expressions for these dimensions, derived to sec-
ond order in«, exhibit a hierarchy related to the degree of
anisotropy: the higher is the rank of the operator(the more
anisotropic is the contribution), the larger is the correspond-
ing dimension, and thus the less important is its contribution
to the inertial-range behavior. This hierarchy can be ex-
pressed by the relation]Dnl /]l .0, which is obvious from
the first-order expression(5.5). It holds for all values ofn
and d. This picture is similar to the hierarchy relations de-
rived earlier for the passive scalar and magnetic fields ad-
vected by the Gaussian velocity ensembles[21,29–32].

In particular, this means that the overall leading term is
given by the exponent from the isotropic sector, and it is
therefore the same for the isotropic and anisotropic forcing.
It also should be stressed that the independence of the scal-
ing behavior in different sectors is a direct consequence of

the linearity of our model, independence of the exponents on
the random force, and the SOsdd symmetry of the unforced
model. On the contrary, thehierarchyof the exponents fol-
lows from the explicit expressions, obtained only by practi-
cal calculation.

According to the Kolmogorov-Obukhov theory[1,2], the
anisotropy introduced at large scales by the forcing(bound-
ary conditions, geometry of an obstacle, etc.) dies out when
the energy is transferred down to smaller scales owing to the
cascade mechanism(isotropization of the developed turbu-
lence in the inertial range). The analytical results discussed
above confirm this classical concept and give a more quan-
titative picture of the isotropization.

The hierarchical picture, derived here and in Refs.
[21,29–32] for passively advected fields, appears unexpect-
edly general, being compatible with that established recently
in the field of NS turbulence, on the basis of numerical simu-
lations and natural experiments; see Refs.[60] and refer-
ences therein. There, the velocity structure functions were
decomposed in the irreducible representations of the rotation
group. It was shown that in each sector of the decomposition,
scaling behavior can be found with apparently universal ex-
ponents. The amplitudes of the various contributions are
nonuniversal, through the dependence on the position in the
flow, the local degree of anisotropy and inhomogeneity, and
so on.

It is worth recalling here that the so-called “additive fu-
sion rules,” hypothesized for the NS turbulence in a number
of papers(see, e.g., Ref.[61]) and characteristic of the mod-
els with multifractal behavior(see Ref.[62]), arise naturally
in the context of the rapid-change models owing to their
linearity. The existing results for the Burgers turbulence can
also be interpreted naturally as a consequence of similar fu-
sion rules, where only a finite number of dangerous operators
contributes to each structure function; see Ref.[63]. This is
rather surprising because the equations for the correlation
functions in such cases are neither closed nor isotropic and
homogeneous. One can thus speculate that the anomalous
scaling for the genuine turbulence can also appear, in some
sense, a linear phenomenon. Of course, one should not insist
too much on this bold assumption.

C. Universality: Independence of the time scales

An important issue is that of the universality of anoma-
lous exponents. As already discussed, the exponentsDnl
=Dnls« ,dd in Eq. (5.4) are independent of the forcing in the
scalar equation(1.2), and thus independent of all the param-
eters that can appear in its correlation function(1.3).

However, the exponents depend on the exponent« that
enters the correlation function of the stirring force(1.5) in
the NS equation(1.4). They also depend ond, the dimen-
sionality of thex space[note that the basis dimensions re-
lated to the velocity field ared independent; see Eqs.(4.5)].

Earlier, it was argued on phenomenological grounds that
the anomalous exponents of the scalar field can depend on
more characteristics of the advecting field than only the ex-
ponents; see, e.g., the discussion in Ref.[34]. Indeed, ana-
lytical derivation of the anomalous exponents of the passive
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scalar field, advected by a Gaussian velocity with finite cor-
relation time, has revealed for some asymptotic regimes(“lo-
cal turnover exponent”) their dependence on the correlation
time of the velocity field(more precisely, the dimensionless
ratio of the correlation times of the scalar and velocity
fields); see Refs.[29,30,35].

In our case, the exponents could depend, in principle, on
the analogous dimensionless parameteru0;k0/n0 from
(3.1), the (inverse) Prandtl number. After the RG resumma-
tion, this parameter is replaced with the corresponding in-
variant variable, which has exactly the meaning of the ratio
of the scalar and velocity correlation times(for a detailed
discussion of this point see Ref.[29]). However, the analysis
of the RG equation shows that in the ir asymptotic range, this
parameter tends to a fixed point, whose coordinateu* de-
pends ond and «, but not on the initial valueu0; see Eqs.
(4.2) and(4.3). As a result, all the dimensions, includingDnl
from Eq. (5.4), appear independent ofu0. In the RG lan-
guage, the nonuniversality(that is, the dependence on the
ratio u0 or its analog) of the exponents in the Gaussian model
is a consequence of the infinite degeneracy of the ir stable
fixed point; see the discussion in[29]. In the NS model, the
fixed point is unique(nondegenerate), and the exponents ap-
pear universal.

We stress that, although the coordinates of the fixed point
are known only in the two-loop approximation[see the dis-
cussion below Eqs.(4.2) and (4.3)], the statement about the
universality is exact, that is, it holds to all orders of the«
expansion.

Since the degeneracy of the fixed point in the model stud-
ied in Refs.[29,30,35] is an artifact of the Gaussianity of the
velocity ensemble, we believe that our result for the non-
Gaussian velocity ensemble, described by the Galilean-
covariant NS equation, suggests that for the real passive ad-
vection the anomalous exponents are universal, that is,
independent of the Prandtl number or the ratio of the scalar
and velocity correlation times. This is probably the most im-
portant qualitative conclusion that can be inferred from our
analysis. It is then relevant to discuss the role played by the
Galilean symmetry of our model in the RG analysis.

D. Sweeping effects and the Galilean invariance

The results obtained within the RG and OPE approach
and within the« expansion, are reliable and internally con-
sistent for asymptotically small«. A serious question is that
of the validity of the« expansion for finite«’s, and the pos-
sibility of the extrapolation of those results to the physical
value«=2.

For the rapid-change model, the« expansion works sur-
prisingly well. It was demonstrated[19] that the knowledge
of three terms allows one to obtain reasonable predictions for
finite «,1; even the plain« expansion captures some subtle
qualitative features of the anomalous exponents established
in the exact solutions of the zero-mode equations and in
numerical simulations. The quantitative agreement can be
achieved with the aid of various improvements, like the in-
verse« expansion or interpolation formulas[19].

In the case of the Gaussian model with a finite correlation
time, however, there is a natural upper bound for the range of

validity of the « expansion: for« larger than certain thresh-
old value «c, the velocity field(and hence all its powers)
become dangerous: their critical dimensions, known exactly
due to the Gaussianity, become negative, and new strong ir
singularities occur in the diagrams; see the discussion in Ref.
[29]. This leads to a qualitative changeover in the small-mr
behavior of the scalar field, as demonstrated in Refs.
[37,38,41] using certain nonperturbative analytical methods
and numerical experiments. Therefore, the results obtained
within the plain« expansion no longer apply.

Physically, this is a manifestation of the fact that above«c,
the so-called sweeping effects(kinematic transfer of the
small-scale turbulent eddies by the large-scale ones) become
important. Thus such threshold value can also be viewed as
the upper bound of the range of validity of the model itself:
the lack of Galilean covariance becomes a serious shortcom-
ing of the synthetic Gaussian velocity ensemble when the
sweeping effects become important.

In the model(1.4) and(1.5), the dimensions of the powers
vn are known exactly,Dfvng=nDfvg=ns1−2« /3d; they all
become negative for«.«c=3/2 [43–45]. Some operators,
built of the velocity field and its temporal derivatives, also
become dangerous for«,2; see[44,45]. Their contributions
to the OPE for the correlation functions of the velocity and
scalar fields become singular; however, they can be summed
out explicitly using certain infrared perturbation theory. This
indeed results in a qualitative changeover in the small-mr
behavior of the correlation functions, their strong depen-
dence on the ir scale,=1/m, and superexponential decay in
time [43–45], in agreement with the phenomenological
analysis of Refs.[64].

Galilean symmetry of our model guarantees, however,
that the invariant quantities, for example, the equal-time
structure functions(1.1), are not affected by the sweeping.
More formally, the contributions of the aforementioned dan-
gerous operators do not appear in the OPE for Galilean in-
variant correlation functions; see Refs.[16,43–46] for de-
tailed discussion. This means that in model(1.2)–(1.6), the
scaling relations obtained for small«, for Galilean invariant
quantities can be extrapolated beyond the threshold«c, in
spite of the fact that the sweeping becomes important there.
The most recent numerical simulations of the model
(1.4)–(1.6) have shown that the scaling relations, obtained by
the RG analysis for the structure functions, remain valid for
« as high as«=7/4 [51].

E. Extrapolation to the physical value«=2. Relevance of the
model for the real turbulent advection

Our calculation of the anomalous exponents implied
smallness of the RG expansion parameter«. For small«, a
serious flaw shared by our model with the Gaussian ones is
that the advecting velocity field is nonintermittent, in con-
trast to the real turbulent fluid. However, numerical simula-
tions of Refs.[51,52] suggest that, as« increases, the behav-
ior of the model (1.4)–(1.6) undergoes a qualitative
changeover and the scaling of the velocity field becomes
anomalous: the exponents of the structure functions become
different from the results of naive extrapolation of the small-
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« prediction. In the RG language this probably means that
certain Galilean invariant operators acquire negative critical
dimensions for some finite values of«, close to the physical
value «=2. Unfortunately, identification of those operators
and calculation of their dimensions on the basis of the model
(1.4)–(1.6) lies beyond the scope of the present RG tech-
nique: the effect takes place for finite, and not small, values
of «, while the dimensions of the operators are known only
in the form of the first terms of the expansions in« (some
dimensions are known exactly, but they all remain positive
for «ø2). Detailed discussion of the critical dimensions of
Galilean invariant operators can be found in Refs.[16,44,45]
and the original papers[50,65]. Hopefully, the problem will
be solved with the aid of an alternative perturbation theory
(the expansion in 1/d seems very promising, but so far it has
been constructed only for Kraichnan’s model and only to the
leading order[10]).

If the dangerous Galilean invariant operators indeed arise
in the model(1.4)–(1.6) for some finite values of«, they will
also contribute to the OPE’s for the structure functions(1.1)
of the scalar field. Physically, this corresponds to the contri-
bution of the velocity to the intermittency of the scalar field,
while the contributions of the operators(5.2) and (5.3) cor-
respond to the intrinsic intermittency of the scalar field itself.
Obviously, only the latter contribution can be described
within the « expansion. Since the scalar fields appear much
more intermittent than the velocity field, one can assume that
this latter contribution dominates the anomalous behavior of
the scalar, or, at least, it is relatively more important than the
former. One can therefore hope that the dimensionsDn and
Dnl, taken at the physical value«=2, can be identified with
the leading anomalous exponents of the structure functions
of the real passive scalar field.

Experimental results for the structure functions of a pas-
sive scalar field are presented in Refs.[4–6] in terms of the
exponentszn, with Sn~ rzn. For an even function, in our no-
tationz2n=−2nDu+Dn, whereDu=−1+« /3 from Eq.(4.5) is
the critical dimension of the scalar field andDn are the di-
mensions of the operators(5.2), with the second-order ex-
pression given in Eq.(8.4). For the physical value«=2 this
givesz2n=2n/3+Dns«=2d.

The results of[4–6] seem to be consistent with the Kol-
mogorov valuez2=2/3 for the second-order function, in
agreement with our exact resultD1=0. Possible deviation, if
any, can be attributed to the anisotropy of the experimental
setup or/and contribution of velocity’s intermittency, ne-
glected in our analysis.

From Fig. 3 presented in the most recent study[6] one can
infer D2.−0.23 andD3.−0.67, which shows clear devia-
tion from the Kolmogorov values(Dn=0 for all n). For «
=2 and d=3 the one-loop approximation(5.5) gives D2
.−1 andD3.−3; the two-loop correction(8.4) appears nu-
merically very small and does not affect this result markedly.
Admittedly, it is difficult to speak about a good quantitative
agreement with the experimental values.

The situation resembles that encountered for Kraichnan’s
model. There, the one-loop results for the most realistic
valuej=4/3 arealso equal toD2.−1 andD3.−3 [see the
remark and footnote below Eq.(5.5)] and essentially overes-
timate the real value of the exponentsD2.−0.3 and D3
.−0.7, known from the numerical simulations of Refs.[42].
The second-order corrections(although different from their
analogs in our model) also appear too small to improve the
agreement. A better agreement is achieved if the third-order
correction(which is not small) is taken into account, and the
straightforward expansion inj is augmented by additional
considerations about its nature, convergence properties, char-
acter and location of singularities etc.; see Ref.[19].

In contrast to Kraichnan’s model, there is no reason to
believe that in our case the series in« have finite radii of
convergence. As in most field theoretic models, they can
only be asymptotical series. Thus, one should not have ex-
pected that the straightforward summation of the first two(or
even more) terms would give a good result. In models of
critical behavior accurate theoretical predictions for the ex-
ponents imply knowledge of the large-order asymptotic be-
havior of the coefficients of the« expansions, obtained using
the instanton calculus, and special resummation procedures
for the divergent series[15]. In dynamical models the corre-
sponding methods are in their infancy[66–68]: to the best of
our knowledge, an instanton-type solution for an action func-
tional of the Martin-Siggia-Rose type has been obtained only
for a model whose equal-time correlation functions corre-
spond to a system in thermodynamic equlibrium[68]. The
instanton analysis of Refs.[67], performed in Lagrangian
variables(which implies zero correlation time of the velocity
field, that is, only Kraichnan’s case) did not touch upon the
problem of the large-order coefficients of perturbative series;
it has mostly been concentrated on the behavior of the expo-
nentszn at largen. One can hope that further development of
the instanton techniques for dynamical models, combined
with the RG framework will give the solution of this impor-
tant problem. This work is left for the future.
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